
UNCLASSIFIED

AD NUMBER

AD479579

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; Jan 1966.
Other requests shall be referred to Office
of Naval Research, Arlington, VA 22217.

AUTHORITY

Office of Naval Research notice dtd 27 Jul
1971

THIS PAGE IS UNCLASSIFIED



IMPLODING SHOCKS AND DETONATIONS

by

Robert L. Welsh

IJDC

APR 1 1966

S,.. DDC-IRA F

Report No. AS-66-1

Contract Nonr-222-(79)
, January 1966

,.i .LeP



CONTRACT Nonr-222-(79) SPONSORED BY THE
REPORT NO. AS-66-1 OFFICE OF NAVAL RESEARCH
JANUARY 1966

IMPLODING SHOCKS AND DETONATIONS

by

Robert L. Welsh

Reproduction in whole or in part is permitted for any
purpose of the United States Government

FACULTY INVESTIGATOR
MAURICE HOLT, PROFESSOR OF AERONAUTICAL SCIENCES



The substantial part of this report was performed as part of a

Ph.D. thesis of the University of Glasgow in the Mathematics Department

of the University of Strathclyde, Glasgow, under the supervision of

Mr. D. S. Butler, to whom the author is indebted. The author also

gratefully acknowledges the encouragement of Professor D. C. Pack,

Head of the Mathematics Department of the University of Strathclyde.

It



ABSTRACT

1Lne gasdynamic probiem oi coiiapsing shocks and detonation waves

having spherical or cylindrical symnetry is considered near the point

or axis of symmetry. The solution basic to this work is the self-similar

flow of a collapsing symmetrical shock wave with counterpressure neglected.

The focussing effect as the flow progresses causes the front to accelerate

and its velocity is singular at the instant of collapse. In the present

work the perturbations, due to counterpressure and also to a uniform heat

release, which give rise to essentially identical mathematical solutions,

are evaluated. The basic self-similar solution is investigated in detail

over a range of values of the specific heat ratio.

j



IMPLODING SHOCKS AND DETONATTONS

Robert L. Welsh

Division of Aeronautical Sciences
University of California, Berkeley

(On leave of Absence from Department of Mathematics
University of Strathclyde, Glasgow)

The similarity solution to the problem of a contracting (implod-

ing) spherical or cylindrical shock front propagating into a uniform gas

at rest is well known. As the shock progresses its surface area diminishes

causing its velocity to increase towards the center of symmetry, where it

is infinite. The similarity solution is valid near the center of symmetry,

where the shock is strong.

In the present paper the shock is replaced by a contracting

detonation front propagating into a uniform gas and releasing a constant

amount of energy per unit mass of gas. At large distances from the

center, where the curvature is negligible, the detonation is a Chapman-

Jouguet front, i.e., it travels with sonic speed relative to the burnt

gas. The front accelerates towards the center of symmetry and becomes

overdriven, the motion now being governed more by the compression effects,

due to focussing of the front, than by the heat release. The solution

for the final stages is obtained as a perturbation, of order the inverse

square of the speed of the front, on the corresponding similarity solu-

tion involving a shock wave. In the latter solution the strong shock

relations are applied at the front so that only the undisturbed density

enters into the problem, which has no time scale. In the present case

of a detonation the heat release is taken into account, to first order
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so that the basic similarity hypothesis is unaltered, in the conservation

1
identical to that due to taking into account the pressure (or sound

speed) of the undisturbed gas to first order. The disturbance of the

speed of the front due to heat r lease and initial pressure are evaluated

for several spherical and cylindrical cases by linearizing the equations

of motion. The solution has to satisfy the conservation equations at

the front and also be regular on a certain charact-eristic. The basic

and perturbation equations are integrated numerically by making use of

the power series expansions about this characteristic. A comparison is

made with the results obtained by the approximate method as given by

Whitham.

The results obtained by Butler for the Guderley solution are

recomputed and extended. It is found necessary to investigate the

existence and uniquenes of this solution.

1. INTRODUCTION

The unsteady motion of a perfect, inviscid, non-heat-conducting

gas is in general governed by partial differential equations. However,

in the case of a flow which is one-dimensional, or spherically or

cylindrically symmetric, so that the flow variables depend on a dis-

tance coordinate R and the time coordinate t, there is a class of solu-

tions in which all variables are functions of a single combination of R

and t, R/t'C where a is a constant. Such flows are self-similar (Sedov,

1959) and are governed by ordinary differential equations. The special

case a = t c, rresponds to a uniformly expanding or contracting flow, so

that if such a flow is adiabatic then it is also homentropic, apart

from entropy jumps across discontinuities, as any shock wave in the

flow is of uniform strength. An example of a flow of this type is that
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of a strong point-explosion (Sedov, 1959; Taylor, 1950b) which involves

Pa LLL'oILl, ýu1dyilg sphericai shock wave.

The problem to be investigated here is that of a contracting

spherical or cylindrical detonation wave propagating into a uniform

combustible gas. It is already known that there is no solution involving

a uniformly contracting front (Selberg, 1959; Stanyukovich, 1909). This

result will be deduced later from investigation of the integral curves

of R/t, homentropic solutions.

In order to solve the problem of a contracting detonation front

it will be necessary to study Guderley's solution (Guderley, 1942; Butler,1954)

for a converging shock wave, in which the shock front accelerates towards

R - 0, where its velocity is infinite. If the shock path is R - X (t),

then the shock speed U is given by

*1-1/a
U - where 0 < a < 1.

The Guderley similarity solution is valid for small values of X, for

which the shock is strong so that the undisturbed gas pressure can be

neglected. The flow variables behind the front thus depend upon the

shock speed and undisturbed density only, which leads to the similarity

hypothesis. If we now consider the effect of a uniform heat release in

the medium as the front passes through it, then this results in the

addition of a finite amount of energy per unit mass to the system and is

thus a perturbation on the Guderley solution. The form of the perturba-

tion can be deduced as follows. The particle velocity behind the shock

is given by

* 2 * 2 1-1/a
u y - U y X

a y+l y+l
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Let the particle velocity behind the detonation be

uD us + V

where V is supposed small relative to u . The extra kinetic energy per

unit mass, which is directly due to the heat release and so must be

finite, is of order Vu and hence the perturbation velocity V is of order
*-2 '-2+2/a

U or X relative to the basic, shock wave solution. Similarly

-2+2/cc
the sound speed perturbation is of order X- . Throughout the flow

in general the perturbations are of order R-2+2/a. The effect of allow-

ing for the initial pressure (or internal energy) of the undisturbed gas

gives rise to perturbations of precisely the same form. Let the speed

of the front be given by

* 1-1/a (1+0X-2+2/aU -- -l~

where P is a constant due either to heat release or initial pressure, or

both. In a given case we require the values of a, A to determine the

path of the front.

The evaluation of the constant parameter a is performed by

integrating the equations of motion, which can be reduced to a single

first order, non-linear differential equation, subject to certain boundary

conditions. In the case of a point-explosion a Is determined simply by

consideration of the dimensions of the basic parameters (the density and

the energy of the explosion). However, in the contracting case there is

only one basic parameter, the density, and a unique mathematical solu-

tion is obtained by assuming that the flow is regular on a certain

characteristic following behind the shock. The conservation equations

across the front and the regularity condition on the
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characteristic provide the two necessary boundary conditions for the

solution of the differential equation. The values of a for the six

cases y = 1.2, 1.4, 5/3, spherical and cylindrical, have been computed

by Butler. For an arbitrary chuiue uf a there are four possible solu-

tions which satisfy the regularity condition but in each case only one

of these can be made to satisfy the conservation equations at the front.

In order to solve the equations governing the perturbations it is

necessary to recompute the basic similarity solution. Butler's results

are extended to y = 3, for the products of a detonation, and in this

case it is found that the choice of solution from the four possibilities

differs from that for the lower values of y. The changeover from one

solution to the other is discussed in terms of the integral curves of

the system.

To find the correct value of a we must use a method of trial

and error. The equation is integrated with an arbitrary value of a,

starting at the characteristic with the regularity condition satisfied,

and the discrepancy between this solution and the shock point noted.

We repeat the process with various values of a, until one is found

passing through the shock point to the required accuracy.

The equations governing the perturbations are three simultaneous,

linear, first order differential equations, the coefficients containing

the basic similarity solution. Again the solution has to satisfy

boundary conditions at the front and the characteristic, the displace-

ments of each from the basic solution being accounted for. However, the

linearity of the equations means that the appropriate solution can be

evaluated by taking a certain combination of any two linearly independent

solutions.



6

The method of integration of the basic and perturbation equations

akiI L 4 uf iLe ptlwer series expansions about the critical characteristic. I
In this way we avoid any difficulty due to dpriuvtlves being indetcrmi-

nate on direct substitution into the differential equations. The solu-

tion is developed by an iterative procedure which produces approximations

to the solution and its derivative in tabular form. Each iteration

effectively takes into account another term in the power series. P is

calculated for y = 1.2) 1.4, 5/3, 3 for both cylindrical and spherical

symmetry, and for heat release and undisturbed pressure. Comparison is

made with results obtained by the approximate method in the form given

by Whitham (1958). It is known that this approximate method, as applied

by Chisnell (1957) in his "shock-area" rule, gives extremely accurate

results for the values of a but it is found here that the approximate

values of P by this method are much less accurate.

The equations governing the motion are integrated between the

front and the characteristic, which is necessary for the evaluation of

a and 0. To obtain the distribution of the physical variables behind

the front the integration would have to be continued as far as t - 0,

at which instant the shock is at R - 0 and is reflected. If all the

heat energy available is released during the contracting phase of the

motion then the front is reflected as a shock wave.

Contracting shock waves have previously been investigated both

experimentally (Perry and Kantrowitz, 1951) and numerically (Payne,

1957). A problem having great similarity to that of convergi.ng shocks

is that of cavitation in water, which has been studied by Hunter (1960,

1963) and differs from the former in the boundary conditions at the front

and the fact that the motion is taken to be homentropic. A regularity

condition on a certain characteristic is also employed to obtain a
v
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unique solution. The similarity hypothesis requires that the density in

-h ,y ro. G ýIffcL uf finice density (Holt and Schwartz 1963;

Holt, 1965; Holt, Kawaguti and Sakurai), to first order is that nf a pertur-

bation on Hunter's solution,of order the inverse square of the speed of the

front, and is analagous to the present work.

2. EQUATIONS OF MOTION AND SIMILARITY

The equations governing the symmetric motion of a perfect,

inviscid, non-heat-conducting gas with constant specific heats c p cvV

can be expressed in characteristic form as

S* , *• * * ~*, _,2 •0*
Ft(u +kc )+ (u Cc)F(u +kc*) R • (1)

b* u* b*
+ U o (2)

where * denotes a physical quantity,

u deuotes particle velocity,

**

c denotes sound speed, defined by c (ýp )*=p

s denotes specific entropy 2Y
. .y-1

a measure of entropy, is defined by = log (S-----),

p
k 2

y-l

and j = 1 for cylindrical symmetry

2 for spherical symmetry.

Suppose that U is the velocity of a wavefront R = X(t), moving

into uniform gas. For the case of a strong shock wave the boundary

values immediately behind the front, which are identical to those for

a plane front if X is large in comparison with the shock width, are

b w m mm m m m m m mm m w m m -
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* 2 *

u+ U

~I-l

__ Y+1

k y-l

0

k log(±u) + 0

where is the value of at some reference state and the negative sign

is selected if U is negative. The assumption that the shock is strong

leads to the neglect of the undisturbed pressure (or sound speed). Thus

the flow behind the wave is determined by U P p, and since U has the
* %

dimensions of velocity it must be related to ), t by U O , where a

is a dimensionless constant and t < 0 for the contracting case (t - 0

is the instant at which the front is at R - 0). Hence

U d% X
dt t

so that the equation of the front is

t A A1/a

and we can choose A a - a iy fixing the length scale appropriately.

Thus the front is

* %1-1/a

t * *
Let 7 M . The values of u c on the shock, 1 - - 1, are

aR

* 2 1-1/a
U%
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* \)21(y-1) ,1-1/a

C. y+-I

k(l- ) log X + 0
0

and the general values are

u* u)R 1-1/a/

c c()R

* 1 .*
0 k(1-L) log R + 0(g) + 00

where

2
u(-1) " -2

c(-l) yy- (4)y+l

0(-l) - o.

We have thus expressed the quantities u , c , in terms of u, c, 0,

which depend on a single variable a, and are governed by the ordinary

differential equations, deduced from (1) and (2)

-(u -(u-kc) (1-_-(u±c)(u~kc) ; jauc " +k(l-a) (5)

dO = k(I-a)u (6)
dt 1-tu

Define the dimeiwaionless variables r, s by

r - ut, s - ct
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then the equations (5), expressed in terms of r, a after eliminating

dA using (6) become
di

dr
2D (1 (1-r+s)B+ + (1-r-s)B.

(7)di
2kDW ! - (1-r+s)B+ - (1-r-s)B

where

D - (r-l)(1-r+s)(l-r-s)

B± (r-l) l-a(r+s) (r-ks) ± jc•(r-l)rs + k(-a) s2
-- I Y

The equations (7) combine to give a single differential equation for

r r(s)

1 dr _ (1-r+s)B+ + (l-r-s)B)

k ds (l-r-s)B+ - (l-r-s)B

Since the wave front is at R - 0 at the instant t m 0, negative values

of a, which correspond to negative values of t, arise from contracting

fronts and positive values of a from expanding fronts.

The conservation equations across the front, assumed plane and

including a heat release term are

p* (u*U*) * * o*

0 0

p + p*(u- U) 2 p + P(u - U *)2
0 0 0

* *2*
1- (u * 2'(Uo" U*U)2 + y 0 + Q (9)

where Q is the heat release per unit mass of gas, o denotes the undisturbed

*gas and u - 0 if the gas is initially at rest.
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* * •* *2

The solution of (9) for u c , in terms of Q, c (retained

to first order since U > > coQ Q is

* 2 * *I
u - -U -KU

* *l
+c -EU + E U'I (10)

Sk log (+U) + H U +0So0

where

2 *2Ku-j•c + (y-l)Q

EP y+1

, 6y-y 2 .1 1F2J (y -)(3-y) Q

2(y+l) +yy-l) 0"4

H 
2

" 2(y-1) y(y-1) c

*-2 -2+2/a

Thum the perturbation terms are of order U or X relative

to the basic solution, as deduced previously, and the general solution

is of the form

* 1-1/(x - -1+1/A
u - u(Q)R + u(,)R"

* -( 1-1/a + -1+1/a (11)
c c(Q)R + c(Q)R

k(l--) log R + $Q() + F()R

The equations governing the perturbation functions Z, •, F are

obtained by substituting (11) into the equations of motion (1) and (2),
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linearizing the result and eliminating derivatives of any basic terms

Y "ac vC Lim .auic. equations. in terms ot tne dimensionless

variables r, defined as

and F, these are

B+d _.

A +

e(1 - rs)dj(3+k&)- 2-
(r-l) (1 - r + a)

g(l-r)L + 2(1-a)rF a ~l~
d 1 -r

and hence, in terms of ;(s), i(s), F(s),
(1 - r - s)(!r + k)B - (1 - r + s)(r - k)B+ (12)

+ '), ,B ,, dr(r-M(1 r 0' -)•+_• A+_(g +_ k)

(r-l) rl+ (1-)(l -r -)(d1 6+s)B - +(1

3. HOMENTROPIC SOLUTIONS

In the special case a n 1, corresponding to uniformly expanding

or contracting waves, the equation (8) reduces to

dr I r (l-r) - s2 (+J)da a (l-r)(I - r - ktr)

The integral curves of this equation are given in rigure 1 (Courant and

Friedrichs, 1948, page 426), the direction being of that of increasing
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time. The equation has six singular points

(0,0), (1,0), (0,+1), (-k . 47+!)

and it can be shown that the nature of these singularities does not

depend on the value of y or whether j - 1 or 2. A point in the r,s

plane corresponds to a path in the R-t plane. The possible changes

across a detonation or shock front form a locus in the r,s plane. From

the conservation equations across a detonation front, with a constant

heat release Q per unit mass, the following relation between u , c

behind the front can be obtained

c*2  (U*-u*) .. * + U*- (y-_)_

which, in terms of rs, becomes

s (1l-r) L-4+l -

rU

This is the equation of the locus of the possible transitions across

a detonation front. The corresponding shock locus is obtained by

setting Q - 0

which is an ellipse. In each of these equations the value of r has to

be not greater than -L which corresponds to an infinitely strong front.
2 *

The two curves intersect at S± where r - 2 as Q is negligible if U
Y+l

tends to infinity. The lines r - 1 + s are sonic lines and are critical

in that the direction of integral curves changes on crossing them. Thus

no physical solutions can cross r - 1 + s. The detonation locus inter-

sects these lines at D± which are the Chapman-Jouguet detonation points.
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In the expanding case, s > 0, an integral curve runs from D+ to the

point (0,1), which corresponds to a state of rest. This curve rpnrflpDnta

the solution given by Taylor's expanding, Chapman-Jouguet detonation

wave. However, no integral curve can be extended from the point D.,

corresponding to a contracting Chapman-Jouguet detonation front. The

arc D S of the detonation locus corresponds to overdriven fronts and

integral curves intersecting this arc all run into the critical line

r - 1 + a. Hence there exist no uniformly contracting detonation fronts,

either Chapman-Jouguet or overdriven.

4. THE LIMITING CHARACTERISTIC

The boundary values at the front for the basic solution are

given by (3). However, the unknown parameter C9 appears in the dif-

ferential equations, so that an extra condition remains to be found.

This is obtained by examining the lines on which the solution of

equations (5), (6) may be singular. There are four such lines

1 - (u±c)t - 0

1 - ut - 0

In the R - t plane these lines have equations of the form • - constant

so that

dR. a = 1-l/a
dt t

on them. Hence the first pair is

dR * *
dt +c
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i.e., the positive and negative characteristics through R - 0, t - 0.

-- o is R - 0, t .< 0. In the region t < 0 there is a limiting

negative characteristic (l.n.c.) traveling behind the shock and

reaching R - 0 at the same instant, t - 0, as the shock. For an

arbitrary choice of a the solution will be singular on this line. Such

a singularity could exist only if it were produced during the initiation

of the shock and precisely on this limiting characteristic. For this

reason we shall exclude the possibility of a singularity of this type

and require the solution to be regular on thel.n.c. Let the equation

of the l.n.c. be a - ti(0 > al > - 1) in the basic flow, and

S=•(l*5R'2+2/a)

where 5 is a constant, in the perturbed flow. Thus the boundary values

of u , c , 0 , in the form (11) on the l.n.c. are

u*" u(gl)Rl'l/a +\( 5) + G Qu + R-1+11/

* l~l-l a 1-II1

c c(Q)R 1l/a + alb + Z(,)l Rl+1/a

0* - k(l-•) log R+-0(tl) + (- •d 8 + F1.2+2/a

Also, on this line

dR *
dt U -C

and, from its equation, we have

d R .1 1l 1/ a -+ 1/ cx
dt R 32)
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on it. Equating the coefficients of RI/ R in these expressions

frdR
for !LR gives

" I(U" 1 - 1
(14)

26ýd (~c 1 + + (3-2a)8 - 0 (4

where u1 - u(Q). If we denote by s the value of a on the 1.n.c. and

let

r = r(s)

dr
r (=-)I ds Sins J

0

then (14) can be written as

r -s -1 (15)

00+

+ 2(c<-I)b + r lB (16)
0 0 ~ 2s 2(r +k)

where derivatives have been eliminated using the basic equations.

Since this line is a negative characteristic the variables

there must satisfy the characteristic condition

d(u -kc*) - u dt - c_ d0
R y

which, on setting the leading two coefficients zero, gives

(1-1)(ro-ks) jroa - 1 (17)
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* ~ 8B 2 - ( +s + 1 (y+1) 17

0 2s 2(r +k) a Y(y-1)5
0

+ 2 + +~ + Ja(2a-1) (18
y y 1-a (18)

+ 5 ý 2k (1-a) + 2-s F - 0.
812a3Yo 00

The conditions (17) (18) could have been derived directly from the

differential equations. We require dLr ds to be finite on • i

i.e., r a 1 + a. Hence we require B = 0 for a a a, which is equiva-

lent to (17). Similarly, the condition that d-: d- be finite fordg)* dj
Sa so means that A must be zero to order s-S , which can be shown to

0 -0

be equivalent to (18).

5. THE BOUNDARY CONDITIONS

The boundary values of u , c , at the front are given by (10),

from which we can deduce the boundary values of r, a, , s, F there,

taking into account the displacement of the front from the shock path.

The equation of the front is

S- - 1 +-• A"2+2/a

Hence, on the front

u* u(-) X 1-1/a + . ,du + u(-1) ? l,-1+1/a
* -u(-l + 3.23-2 d

0 * xk1-11a + ) ldc. X () 1+11
€~ -0 %(-)2 +2.2/a .

•k(1- -1) log x, + 0(-1) + (-1 3 .• .~) " -2+2/ot
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and equating these to (10) and expressing the result in terms of r, a,

r, , F, gives

a -E

2
r(-E) - -l

20 -u---- + 2-a -1 XC(y+l)(3-2a) V +1

(19)

s(-E) Y, 3-2 +l+ + ?-k -kU - E

F(-E) - H +kP{

The above boundary values, together with the regularity conditions

(16), (17), (18) serve to determine the solution. The basic solution for

r - r(s) has to satisfy the differential equation (8), which contains

the unknown parameter a, and the boundary values r(so) - t, r(-E) - 2

where ros are given in terms of a by (15), (17). On substituting (15),

i.e. r 0 1 + ao, into (17) a quadratic in So is obtained. Consider the

expansion for r(s) about the l.n.c.

r(s) - r + r 1 (S'so) + r 2 (S-S )2 + .. + rn(so)n + '

The solution can be developed theoretically by substituting this series

into the equation (8) and hence evaluating the coefficients r by

equating the coefficients of (s-s )n to zero. Leto

B B+ + +(s-s)+. . + B n )n +
+ + + 0 nl+ 0
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Then the equations for r are
n

B =0
o-

2s o(r 1+ k)B. + (l-r19(r 1 - k)Bo+- 0

-2s (r + k)B - 2s onrn B + rn(r I- k)B+ - (l-r 1 )nrn Bo+

+ terms in rn-1i rn- 2 etc. - 0, n , 2

The first two of these, which determine r0 , rI . are quadratic equations

but all of the succeeding ones are linear since B contains r r

etc. and is linear in rn. Thus, for a given value of a, there are

four solutions and we require one of these solutions to pass through

the shock point for some particular value of a.

The perturbation terms , , F have to satisfy the differential

equations (13) together with the boundary conditions (19) containing

the unknown parameter A, which measures the displacement of the front,

and the boundary conditions (16)(18) containing the unknown l.n.c. dis-

placement 8. The latter contains F0, which is the boundary value of

F on the l.n.c. and is the third unknown. Thus there are six boundary

conditions Qontaining three unknown parameters , 8, Fo and, since the

boundary conditions are linear, the solution for r, s, F is uniquely

determined in terms of r(s).

6. THE NUMERICAL SOLUTION

In order to evaluate the perturbations it will first be necessary

to find the correct value of a and tabulate the basic solution r - r(s)

for the particular choice of y and J. We can avoid the possible difficulty
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dr

of !s being indeterminate at a - a on direct substitution into the

differential equation (8) by making use of the power series expansion

for r(s) it a - aS, the existence of which is ensured by the regularity

assumption. However, direct computation of the coefficients r is out

of the question because of the rapidly increasing complexity of the

form of the equations for r., and each r has to be dealt with
n

separately. For this reason the following iterative method is employed.

Let R R' be tabulated functions which represent r, r' respectively
n

as far as the term involving rn, in the form

R' - rl+2r (s-so) + . + nrn(,_, )n-1 + (n+l)n (Ss )n + 0((Sso )n+l
n 1 2 o nr 0  n+1 0

Rn r o+r (s-s ) + . . + rn (s-)n + n+l (- )n+l + O((s-s) n+2

where Cn+l is constant.

From these we can deduce the next approximation R'n+l, R+I by substituting

the former into equation (8), written as f(r, r', s) - 0.

Then

i2 f(R Rls) - (R- a) + R r') + 1( 2r --W I

2
+(Rn- r)(R'-r') +

n n Mr

22f O. 0 r, ) O

where ;rr ( ) o 0,
0

which we can write as

.. ,+ =i n+ n(2 i "n + l•() (n+1 rn+l) ýý;-) + 61)•r) O + Ol-o +0
S~0
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In neglecting the term of order (s - s n+2 in the above we obtain a

0

formula for C .,-r.., and hence the followine iterative formula for

R'.

Rt R'- nf(n) (20)
n+1 n (Sa) ) + (n+l) ",)o ir

The error coefficient en+2in Rn+2 so obtained is independent of

E+1 and is a function of n and the partial derivatives of f at s = s•

From (20) we can tabulate R' throughout the range a to -E, and to
n+1 o

obtain Rn+1 we use the following integration formula

r I'ds 2 r' + 13r,'- + 1Or - r!(21)

si-I

where h is the step width and r! = r'() The formula uses only points

of the subdivision, in which it is symmetric, and requires one extrapola-

tion at each end of the range in the table of the derivative. The

relative truncation error is

Ii 4d 4  where s < s < a
720 ds4 -2 i+1ds

Sj

In practice the total range from a0 to -E is roughly 0.2 so that only

5 subdivisions of the range are sufficient to ensure that the i.

tion does not introduce errors of order (a - a ) n+ (otherwise
0

iteration would fail to converge to the solution). The extrapL :

* forumla corresponding to (21) is

ri+l 4r' - 6r'-l+ 4r' r-
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The initial approximations are taken as R1 rl, + and

the iteration can be continued indefinitely. Being iterative the method

is suited for progxumming on a computer. it is self-checking to the

extent that it can converge only if the successive approximations Rn,

R' satisfy the differential equation more accurately at each stage. The
n

solution is developed in tabular form, ready for use in the solution for

r, s, F. Although the series expansion about one fixed point, a a 0o

is employed the convergence is very rapid since the total range 0.2.

The method can be extended to the solution of the three

simultaneous equations (13) for r, s, F. Having selected 8, F0

arbitarily we find r, S from (16)and (18). To form the initial

approximations to r, s F werequire their derivatives at a a 0.

These are obtained by equating to zero the appropriate coefficient

in the expansions of the differential equations. These yield

-A (r +k)
+ k 02o+

2a
0 0+

SA2 - (r 1 -k)
- k 1 -a(l-r )B

B0+ F1 2(l-)(r 1+ k)(2r a F + ki )

where A is linear in rl, S, FI.

Thus we can tabulate R+ r , + (s - so) etc. The iterative

formulae for Rn l, etc., are obtained by substituting the n approxi-

mations into the governing equations and retaining only the first term,

which gives three simultaneous, linear, algebraic equations for the

corrections A' - R' etc. Solving the equations we obtain the required
n+l n"
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iterative forrulae, and, for example

P[+161 2)(n-l ) L(n)

8•. -2

(n+l)( 6) M(n)(s-sO)
0

6M 6L

+ 1 0]

(LN
0

where equations (13) are denoted by L, M, N reapectively,

M(n) - M(I it ' S n.

n x'n'

p- ') + (•'M)l +•'fO o 12

"F 0•S)S f(rr)I + (n+l)('r-- 3,)

and (t) , for example, is the coefficient of (a - ao) in the expansion

of (M) about a - ao, and is also the first non-vanishing coefficient.

7. THE BASIC SHOCK WAVE SOLUTION

For a given choice of yj we wish to calculate the appropriate

value of a and tabulate r(s) from the l.n.c. to the front. It remains

to be settled which of the four solutions can be made to satisfy the

conditions of the problem. The six cases y - 1.2, 1.4, 5/3 with j - 1,

2 were computed by Butler (1954). The same solution "branch" is taken

in each of these cases. In extending thebe results to the case y - 3,

corresponding to the motion of the products of a detonation, it is found

that a different choice of branch is necessary. For this reason it was
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thought necessary to examine the behavior uf the integral curves of the

•ti. .•ti,-, wiil, u view to examining the nature of the change-

over and also the existence and uniqueness of the solution, pArtoulsarly

in the region of the changeover. The integral curves for the case y - 1.4,

j - 2 are given by Guderley. The two cases selected here are y 5/3,

j - 2 and y - 3, j - 2.

The equation (8) for r(s) can be written

ldr -r-1 r(r-1)(cxr-1) + s2%1(1.-) - a9(j+l)r'

dsa(r-1) 2 4-k~ar(j+k+l~j - r(r-l) (ar-i)' + ks2 i~ + C40

which has nine singular points. Thy.re are three on the r-axis Pu(0,O),
14

P (0,I) and (O•) and three in the region a < 0

P2(8o+, 1 + sa+)

P3 (so • + a

P5(SI
P5 ( a(j+k+l)

using Guderley's suffices. The remaining three are the mirror images of

P 2' 3  P 5 in the r-axis and correspond to expanding flows. The quantities

o are the two roots of the quadratic for s and S is the negative solu-

tion of

2 r(r-1)(cr-l)

k
where r = c(j+k+l)

The behavior of the integral curves is found by determining the

nature of these singularities, the region of interest being a < 0,



25

0 < r < 1. In these calculations the correct value of a was used. The

l a 4 . I L . ... J/J" -j ZILI uuCv

change direction on crossing the line r - 1 + a, except for the two

limiting ones through each of P2 and P which represent the four solu-

tions which are regular on the l.n.c. We require a curve which starts

at the shock point and passes through P2 or P3 and also through the

origin P4, which corresponds to t - 0. On this curve time must increase

from the shock point to P 4' From the sketch it is seen that 6,.ere are

two such curves, one through P2 and the other through P3. One of these

has to be made to pass through the shock point for some choice of a.

For values of y in this neighborhood it was found in practice that an

appropriate solution was found by selecting the curve through P3 and

the curve through P2 could not be made to pass through the shock point.

The sketch of the integral curves in the case y - 3, j = 2 are

given in Figure 3. In performing the calculations to determine the

nature of the singularities the correct value of a was used. In this

case P2 and P are both nodes and P5 is a saddle point, below the line
2 35

r - 1 + s. The two curves running towards P5 can be discounted but

there is no obvious choice between the remaining two. Again only one

solution was found, the curve through P2 being selected in this case.

Investigation of the integral curves does not settle the

issue of uniqueness of the solution. For given y,j there is a range of

values a1 < a < a2 for which a is imaginary. The range 0 < a < a
1 2 0

never yields any solutions. For j - 2 as y is increased from 1.2 the

correct value of a approaches a2 and the correct values of a approach

each other. For some critical value of y, yC say., the roots are equal

and the transition from one branch to the other occurs at yc. For any

given value of y, a2 is that value of a for which P2V P3 coincide. For

I
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values of a < a2 these two singular points are complex and so no regular

soiutions can be contInues across the line r n 1 + s to the origin. As

a is increased from a 2, and P3 separate'ard movP along the segment of

r - 1 + a as far as (0,1), (-1, 0) when a a 1.

We require a solution through either P2 or P3, the solution and

the positions of the two points depending on the value of a, and also

through the shock point, the position of which depends on y only. In

Table 1 d(P 2 ) denotes the discrepancy, for the spherical case, between

the solution obtained by integrating from P2 as far as s - -E and the

required value of •--L-there. For Y - 1.865 d(P ) has a zero in the given

range and this zero corresponds to the actual solution. Apparently d(P 2 )

has no zero. The situation is reversed in the case y - 1.875, the point

P2 being appropriate in this case. Thus, 1.875 > yc > 1.865. The tran-

sition at y - yc takes place smoothly and there io no apparent physical

significance to the case y - yc.

For a given y the rootp for s° are monotonic in a in the range

0 < a< 1, so that P21 P3 vary continuously, without repetition, along

the arc r l+ s as a varies between 02 and 1. Together with the results

of-Table I this suggests the following behavior. For a - a2, P2 and P3

coincide and the single integral curve through them separates the area

0 < r < 1, r > 1+ a into two distinct regions. As a is increased the

two integral curves through P21 P3 must lie wholly within each of these

regions so that points in the lower region may be reached from P3 for some

value of a and those above from P2 ' It seems likely that no two curve#

through one of P2, P3 will intersect for distinct choices of a. If this is

so then the solution will be unique for all y. The choice between P2, P3 is

determined by whether the shock point lies above the liMiting integral curve

through the point formed by the merging of P2 P P3. Apparently for ¥ < Yc

the shock point lies below this curve, and above it for y > yc.
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The results for the eight cases y - 1.2, 1.4, 5/3, 3 with j - 1,2

are given in Table 2 along with those given by Whitham's approximate

method, to be described later, fur comparison. The case y - 3 has not

been studied previously.

8. THE PERTURBATION SOLUTION

The solution for the perturbation s are now obtained by integrating

the three simultaneous equations (13) for r, s, F, subject to the boundary

conditions at the front and the l.n.c. The function r(s) and the para-

meter a appearing in (13) are now known. As for the basic solution we

develop the solution away from the l.n.c., having satisfied the regularity

condition there, as far as the front. To do so we select arbitrary values

of 85, F0, which determines r, s. F at s - so, and continue the solution

to s - -E, where the conditions will, in general, not be satisfied by

the present solution. Suppose we have found two such linearly independent
solutions, corresponding to choices 5(0) F(o) J ()o

values of 8, F . Let o , r1 o denote the values of ; at i = S, -E
H 0

respectively of the o solution. The boundary cdnditions at the front,

given by (19) can be written as

~ A -El
H 1

F - A • + Ho, where • is unknown.
H 3

Let us take a linear combination of the two numerical solutions and

satisfy the above conditions. Thus

(I
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Xý(o) 4-yr-l) = EA
H H I

Xi(o) +. y6(l)=A f(2
H H A2 - (22)

xF(O) + l
XF(0 + YF (1 A3 + HO
H H

which can be readily solved by X, Y, • so that we can thus evaluate •.

The solution for •, g, F appropriate to the boundary conditions can be

obtained by performing the integration from the l.n.c. with the correct

values of 8, F which are given by

F - (°) + (1)
00 0

5= (c -l) + r'Z -)B+o

2o(rl+k)
0 1

The quantities K, E', H appearing in (22) depend upon the
*2

values of Q, co , However, the dependence is linear so that all that

is necessary is to evaluate two solutions due to linearly independent
*2 . *2

choices of Q, c2 . For simplicity we can take Q -1, c - 0 and
* c

Q - 0, co 0 1, the former corresponding to a detonation front and

the latter to the correction due to counter-pressure. The solution in

a specific case, due to either or both of these effects, is found by

taking the appropriate combination of these two solutions. For y - 1.2,

1.4, 5/3, 3 and j - 1,2 we have sixteen distinct cases. The results

for these are given in Tables 3, 4, 5, and 6 along with those obtained
* *

by the approximate method of Whitham. The boundary values of u , c at

the front are given by
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* 2 1-1/aC +l -I+1/

u -- % 1 + (P- 2-ox

C EX 1ia 1 + ( E- -2+2/a

The coefficients - • K E- are also tabulated,

2 P + j-aE aloabatd

9. THE RESULTS AND THE WHITHAM SIMPLIFIED ANALYSIS

Before discussing the results it will be of interest to

evaluate the solution by the approximate method in the form given by

Whitham. It is known that this gives remarkable accuracy in estimating

a (Chisnell, 1957; Whitham, 1958). Chisnell employed his "shock-area"!

rule, which he formulated for shoalk waves in channels of slowly varying

cross-section, in the evaluation of a for y - 1.2, 1.4, 5/3 and j - 1,2

and compared the results with Butler's. Whitham obtained Chisnell's

results by assuming that the characteristic conditions to be satisfied

behind the shock will be satisfied by the boundary values there. This

method will be applied to the present problem.

The characteristic condition to be satisfied behind the front

is

d(u kc ) - ju c R dt "-c- ad
Y

and the boundary values there are

* 1-1/a 2• -I+I/Cu R + (K.-Y+1)R

c - ER + (E'+ PE) R

0 -k(l- -) log R + (Ho+ ko) R-2+2/a
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On substituting these values into the characteristic condition,

dR _ -* * . . ..- 2+2/a
Zzld ~ig hz u-L LA-L dt - u4 , WC V'ULU III M jJU.LYLLUIU.LUJ. LII A%

Setting the first term zero gives Whitham's formula for a

!. =y+l (23)
a (2 + E)(I + E

Equating the coefficient of the second term to zero yields

E 2K Y4 E 2I-• 2E.
2 -oH+ K - y• (2Y

= (v+I) + 1 0 (24)
-zE( (-L + E) 4( 1 + -)
y+l y+l + Y

These approximate results neglect the effect of disturbances reaching the

shock from behind, due to the characteristic condition not being applied

correctly. The changing surface area of the shock is accounted for. The

area of the front is proportional to Rj which results in the exponent in

the power law for the shock speed, i.e., 1-, being proportional to J.

The perturbation solution for P, which arises from energy terms pro-

portional to volume and independent of the geometry of the system, is

independent of J. The result (23) for a is very accurate because the

propagation of the shock is largely governed by the focussing effect,

due to its surface area diminishing, and is affected little by other

disturbances. This is not the case for the perturbations neither of which

(heat release and initial pressure) are geometric effects and the results

for P are much less accurate than those for a. A graph of the approxi-

mate results for P is given in Figures 4 and 5.

From the results obtained by the full analysis it is seen that
,2

for given J, Q, co there is always a change in sign in P, considered

as a function of y. Thus the introduction of either of the two effects
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can produce an increase or a decrease in the speed of the front,

0ý- uup, Lii• value oi y. in each case p - 0 tor some value of

y and in this case the perturbation of the front speed il of nrder

-4+41aiX MThe critical values of y were found by the approximate methoi
*2 *2,

to be 1.30 for Q - 0, co 1 and 1.24 for Q - 1) c * 0. The graph

of P from the approximate method follows the behavior of the correct

values fairly closely, and the former would appear to be sufficiently

accurate to estimate the critical values of y to two decimal places.

If the :-nitially uniform medium considered so far is replaced

by a medium initially at rest but having variable density, p0 et RC,

say, where m is a constant, then the initial sound speed co0RCC/R

The similarity hypothesis will still hold provided c remains small
m 1

relative to U , i,e. <- - 1, and the solution is

* X 1-1/a( A%-l+l/a-m/2)
U - -+X

*2
where the value of • is identical to that in the case co -1, Q 0,

computed previously. The coefficients of the perturbations do not

differ frc*- the previous solution, the only difference being in the

power of X.

The author gratefully acknowledges the guidance of Mr. D. S.

Butler throughout the course of this work and in particular for

suggestirg the numerical solution. The computations were performed

on the Atlas Computer of the Science Research Council, Didcot,

Bekshire.
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Table 1

y i 1.865 y - 1.875

d(P 2 ) d(P 3 ) a d(P 2 ) d(P 3 )

0.674453 so imag. so imag. 0.6738558 so imag. so imag.

0.6744535 - 0.00459 - 0.00033 0.6738559 + 0.00206 + 0.0033

0.674454 - 0.00557 + 0.00066 0.6738560 + 0.00132 + 0.0039

0.674456 - 0.00798 + 0.00308 0.6738562 + 0.00079 + 0.0046

0.674460 - 0.0109 + 0.00606 0.67386 - 0.00387 + 0.0092

0.675 - 0.0749 + 0.0751 0.675 - 0.1003 + 0.118

Table 2

Sa approx. a a approx.

1.2 0.861163 0.859762 0.757142 0.754021

1.4 0.835323 0.835373 0.717174 0.717288

5/3 0.815625 0.816043 0.688377 0.688654

0.775667 0.772661 0.636411 0.629542
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Table 3

*2
j 2, Q 1 c• 0

y approx I • - K +

1.2 - 0.0482 - 0.1009 - 0.3209 0.8891

1.4 0.2158 0.2508 - 0.2292 1.2108

5/3 0.5894 0.7737 , 0,1152 1.6626

3 3.2679 4.4760 + 0.4760 4.4760

Table 4

,2J-l, Q l, co O'

y¥ •approx J P P- K lC + •-

1.2 - 0.04816 - 0.08199 - 0.3020 0.9080

1.4 0.2158 0.2310 - 0.2490 1.1910

5/3 0.5894 0.6692 - 0.2995 1.4783

3 3.268 3.594 - 0.4056 3.5944
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Table 5

j "2 c *2 L
0

y approx 1+1 K + El

1.2 - 0.4730 - 0.7047 - 1.7047 4.2536

1.4 0.2172 0.3097 - 0.6903 2.7382

5/3 0.4541 0.6942 - 0.3058 2.0942

3 0.6667 1.0435 + 0.0435 1.3769

Table 6
*2

J 1,Q O, co 1

y ~ approx P~ . 2 K +-
2 E

1.2 - 0.4730 - 0.6211 - 1.6212 4.3371

1.4 0.2172 0.2593 - 0.7407 2.6879

5/3 0.4541 0.5587 - 0.4413 1.9587

3 0.6667 0.7738 - 0.2262 1.1071
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